-
1 STOSW
Программирование: Store String Word -
2 data
ˈdeɪtə сущ.;
мн. от datum
1) мн. от datum
2) часто как ед. данные, факты, сведения;
информация actual data ≈ фактические данные, реальные данные address data ≈ адресные сведения, адресные данные basic data ≈ исходные данные biographical data ≈ факты биографии business data ≈ деловая информация;
коммерческая информация to cite data ≈ ссылаться на данные to collect data ≈ собирать данные collect data ≈ текущие данные data processing ≈ обработка данных to evaluate data ≈ оценивать данные to feed in data ≈ поставлять данные to gather data ≈ собирать информацию to process data ≈ обрабатывать данные to retrieve data ≈ восстанавливать данные raw data ≈ сырой материал scientific data ≈ научные данные statistical data ≈ статистические данные to store data ≈ хранить данные Syn: news pl от datum pl (употребляется) тж. с гл. в ед. ч. данные, факты;
информация - this * эти данные - initial * исходные данные - calculation * данные вычислений - classified * секретные данные - coded * (за) кодированные данные - control * (информатика) управляющая информация - input * входные данные - laboratory * данные лабораторных исследований - observed * данные наблюдений - measured * результат измерений - * gathering сбор данных - * compression сжатие данных - quick-look * (профессионализм) оперативные данные - * оn word frequencies данные о частотах слов - * for study материал исследования - to gather * оn smth. cобирать материал о чем-л. (американизм) собирать или хранить подробную информацию absolute ~ вчт. абсолютные данные accept ~ вчт. принимать данные access ~ вчт. путевое имя данных actual ~ вчт. реальные данные adjusted ~ вчт. скорректированные данные aggregated ~ вчт. агрегированные данные aggregated ~ вчт. укрупненные данные alphabetic ~ вчт. буквенные данные alphanumeric ~ вчт. буквенно-цифровые данные alphanumeric ~ вчт. текстовые данные analog ~ вчт. алалоговые данные analog-digital ~ вчт. алалогово-цифровые данные anomalous ~ вчт. неверные данные area ~ зональные данные arrayed ~ вчт. массив данных arrayed ~ вчт. упорядоченные данные automated ~ processing вчт. автоматическая обработка данных automatic ~ processing вчт. автоматическая обработка данных processing: ~ обработка;
automatic data processing автоматическая обработка данных automatic ~ processing system вчт. система автоматической обработки данных available ~ вчт. доступные данные bad ~ вчт. неправильные данные biased ~ вчт. неравномерно распределенные данныые binary ~ вчт. двоичные данные biographical ~ биографические данные bipolar-valued ~ вчт. данные обоих знаков bit string ~ вчт. битовые строки blocked ~ вчт. блок данных blocked ~ вчт. сблокированные данные boolean ~ вчт. булевские данные built-in ~ вчт. встроенные данные business ~ вчт. деловая информация canned ~ вчт. искусственные данные chain ~ вчт. цепочка данных character string ~ вчт. строки символов cipher ~ вчт. зашифрованные данные classified ~ вчт. сгруппированные данные clean ~ вчт. достоверные данные clear ~ вчт. незашифрованные данные coded ~ вчт. незакодированные данные collect ~ собирать данные common ~ вчт. общие данные compacted ~ вчт. уплотненные дданные compatible ~ вчт. совместимые данные comprehensive ~ вчт. исчерпывающие данные comprehensive ~ вчт. полные данные computer usage ~ данные по использованию ЭВМ confidential ~ вчт. секретные данные constitutional ~ вчт. структированные данные constructed ~ вчт. исскуственные данные contiguous ~ вчт. сопутствующие данные continuous ~ вчт. аналоговые данные control ~ вчт. управляющие данные coordinate ~ вчт. координатные данные correction ~ вчт. поправочные данные critical ~ вчт. критические данные critical ~ вчт. критическое значение данных cross-section ~ вчт. структурные данные cumulative ~ вчт. накопленные данные current ~ вчт. текущие данные data pl от datum ~ pl данные;
факты;
сведения ~ вчт. данные ~ данные ~ pl информация ~ вчт. информация ~ информация ~ сведения ~ факты ~ aligner вчт. блок перегруппировки данных ~ control block вчт. блок управления данными ~ set control block вчт. блок управления набором данных data pl от datum datum: datum (pl data) данная величина, исходный факт ~ вчт. единица информации ~ характеристика ~ вчт. элемент данных debugging ~ вчт. отладочная информациия decimal ~ вчт. десятичные данные derived ~ вчт. выводимые данные descriptive ~ вчт. описательные данные digital ~ вчт. цифровые данные digitized ~ вчт. оцифрованные данные direct ~ set вчт. прямой набор данных disembodied ~ вчт. разрозненные данные dispersed ~ вчт. распределенные данные distributed ~ base вчт. распределенная база данных, РБД distributed ~ processing вчт. распределенная обработка данных processing: distributed data ~ вчт. рассредоточенная обработка информации documentary ~ вчт. распределенная информация downloaded ~ вчт. загружаемые данные dummy ~ set вчт. набор фиктивных данных encoded ~ вчт. кодированные данные encrypted ~ вчт. зашифрованные данные engineering ~ вчт. технические данные error ~ вчт. информация об ошибках evaluation ~ вчт. оценочные данные event ~ вчт. данные о событиях external ~ внешние данные false ~ вчт. ложные данные fictive ~ вчт. фиктивные данные field ~ вчт. эксплуатационные данные field-performance ~ вчт. эксплуатационая характеристика file ~ вчт. данные из файла file ~ вчт. описание файла filed ~ вчт. картотечные данные flagged ~ вчт. снабженные признаками данные formatted ~ вчт. форматированные данные graphic ~ вчт. графические данные hard disk ~ вчт. данные на жестком диске hierarchical ~ base вчт. база иерархических данных historical ~ вчт. данные о протекании процесса housekeeping ~ вчт. служебные данные identification ~ идентифицирующие данные image ~ вчт. видеоданные immediate ~ вчт. непосредственно получаемые данные imperfect ~ вчт. неполные данные improper ~ вчт. неподходящие данные impure ~ вчт. изменяемые данныые incoming ~ вчт. поступающие данные incomplete ~ вчт. неполные данные indexed ~ вчт. индексируемые данные indicative ~ вчт. индикационные данные indicative ~ вчт. характеристические данные initial ~ вчт. исходные данные input ~ вчт. входные данные input ~ вчт. исходные данные integated ~ вчт. сгруппированные данные integer ~ вчт. целочисленные данные integrated ~ вчт. сгруппированные данные interactive ~ вчт. данные взаимодействия intermediate ~ вчт. промежуточные данные intersection ~ вчт. данные пресечения invalid ~ недостоверные данные invisible ~ вчт. невидимая информация job ~ вчт. характеристика работы label ~ вчт. данные типа метки language ~ вчт. языковые данные lawful ~ разрешенные данные line ~ вчт. строковые данные loaded ~ base вчт. заполненная база данных locked ~ вчт. защищенные данные logged ~ вчт. регистрируемые данные logical ~ вчт. логические данные lost ~ вчт. потерянные данные low-activity ~ вчт. редкоиспользуемые данные machine-readable ~ вчт. машиночитаемые данные management ~ вчт. управленческая информация mass ~ вчт. массовые данные master ~ вчт. основные данные master ~ вчт. эталонные данные meaning ~ вчт. значащая информация meaningless ~ вчт. незначащие данные meta ~ вчт. метаинформация misleading ~ вчт. дезориентирующие данные missing ~ вчт. недостаточные данные missing ~ вчт. недостающие данные missing ~ вчт. потерянные данные multiple ~ вчт. многокомпонентные данные n-bit ~ вчт. n-разрядные двоичные данные non-numeric ~ вчт. нечисловые данные nonformatted ~ вчт. неформатированные данные normal ~ вчт. обычные данные null ~ вчт. отсутствие данных numeric ~ числовые данные numerical ~ вчт. числовые данные observed ~ вчт. данные наблюдений on-line ~ вчт. данные в памяти on-line ~ вчт. оперативные данные operational ~ вчт. рабочие данные original statistical ~ исходные статистические данные outgoing ~ вчт. выходные данные outgoing ~ вчт. исходящие данные output ~ вчт. выходные данные output ~ выходные данные packed ~ вчт. упакованные данные passing ~ вчт. пересылка данных personal ~ анкетные данные personal ~ личные данные pooled ~ вчт. совокупность данных poor ~ вчт. скудные данные primary ~ вчт. первичные данные private ~ вчт. закрытые данные problem ~ вчт. данные задачи problem ~ вчт. проблемные данные production ~ данные о выпуске продукции production ~ показатели хода производственного процесса production ~ технологические показатели public ~ вчт. общедоступные данные public ~ вчт. общие данные punched ~ вчт. отперфорированные данные pure ~ вчт. неизменяемые данные random test ~ случайные тестовые данные ranked ~ вчт. ранжированные данные ranked ~ вчт. упорядоченные данные rating ~ вчт. оценочные данные raw ~ вчт. необработанные данные raw ~ необработанные данные recovery ~ вчт. восстановительные данные reduced ~ вчт. сжатые данные reference ~ вчт. справочные данные refined ~ вчт. уточненные данные rejected ~ вчт. отвергаемые данные relative ~ вчт. относительные данные relevant ~ вчт. релевантные данные reliability ~ вчт. данные о надежности reliable ~ вчт. надежная информация representative ~ вчт. представительные данные restricted ~ вчт. защищенные данные run ~ вчт. параметр прогона run ~ вчт. параметры прогона sample ~ вчт. выборочные данные sampled ~ вчт. выборочные данные sampled ~ вчт. дискретные данные schedule ~ вчт. запланированные данные scratch ~ вчт. промежуточные данные secondary ~ вчт. вторичные данные sensitive ~ вчт. уязвимые данные serial ~ вчт. последовательные данные service ~ block вчт. блок служебных данных shareable ~ вчт. общие данные simulation ~ вчт. данные моделирования smoothed ~ вчт. сглаженные данные socio-economic ~ социально-экономические данные source ~ вчт. данные источника specified ~ вчт. детализированные данные sring ~ вчт. хранимый ток stale ~ вчт. устаревшие данные stand-alone ~ вчт. автономные данные stand-alone ~ вчт. одиночные данные starting ~ вчт. исходные данные starting ~ вчт. начальные данные statistical ~ статистические данные status ~ вчт. данные о состоянии stored ~ вчт. запоминаемые данные string ~ вчт. строковые данные structured ~ вчт. структурированные данные suspect ~ вчт. подозрительные данные synthetic ~ вчт. исскуственные данные system control ~ системное управление информацией system output ~ вчт. данные системного вывода tabular ~ вчт. табличные данные tabulated ~ вчт. табличные данные task ~ вчт. данные задачи test ~ вчт. данные испытаний test ~ вчт. контрольные данные test ~ вчт. тестовые данные time-series ~ вчт. данные временного ряда tooling ~ вчт. технологические данные transaction ~ вчт. данные сообщение transaction ~ вчт. параметры транзакции transcriptive ~ вчт. преобразуемые данные transient ~ вчт. транзитные данные transparent ~ вчт. прозрачные данные trouble-shooting ~ вчт. данные о неисправностях true ~ вчт. достоверные данные uncompatible ~ вчт. несовместимые данные unformatted ~ вчт. неформатированные данные ungrouped ~ вчт. несгруппированные данные unpacked ~ вчт. неупакованные данные unpacked ~ вчт. распакованные данные untagged ~ вчт. непомеченные данные updatable ~ вчт. обновляемые данные user ~ вчт. пользовательские данные valid ~ вчт. достоверные данные valid ~ достоверные данные variable ~ вчт. переменные данные video ~ визуальная информация virtual ~ вчт. виртуальные данные warrantly ~ вчт. данные приемочных испытаний warranty ~ вчт. сведения о гарантиях zero ~ вчт. нулевые данные -
3 Grammar
I think that the failure to offer a precise account of the notion "grammar" is not just a superficial defect in linguistic theory that can be remedied by adding one more definition. It seems to me that until this notion is clarified, no part of linguistic theory can achieve anything like a satisfactory development.... I have been discussing a grammar of a particular language here as analogous to a particular scientific theory, dealing with its subject matter (the set of sentences of this language) much as embryology or physics deals with its subject matter. (Chomsky, 1964, p. 213)Obviously, every speaker of a language has mastered and internalized a generative grammar that expresses his knowledge of his language. This is not to say that he is aware of the rules of grammar or even that he can become aware of them, or that his statements about his intuitive knowledge of his language are necessarily accurate. (Chomsky, 1965, p. 8)Much effort has been devoted to showing that the class of possible transformations can be substantially reduced without loss of descriptive power through the discovery of quite general conditions that all such rules and the representations they operate on and form must meet.... [The] transformational rules, at least for a substantial core grammar, can be reduced to the single rule, "Move alpha" (that is, "move any category anywhere"). (Mehler, Walker & Garrett, 1982, p. 21)4) The Relationship of Transformational Grammar to Semantics and to Human Performancehe implications of assuming a semantic memory for what we might call "generative psycholinguistics" are: that dichotomous judgments of semantic well-formedness versus anomaly are not essential or inherent to language performance; that the transformational component of a grammar is the part most relevant to performance models; that a generative grammar's role should be viewed as restricted to language production, whereas sentence understanding should be treated as a problem of extracting a cognitive representation of a text's message; that until some theoretical notion of cognitive representation is incorporated into linguistic conceptions, they are unlikely to provide either powerful language-processing programs or psychologically relevant theories.Although these implications conflict with the way others have viewed the relationship of transformational grammars to semantics and to human performance, they do not eliminate the importance of such grammars to psychologists, an importance stressed in, and indeed largely created by, the work of Chomsky. It is precisely because of a growing interdependence between such linguistic theory and psychological performance models that their relationship needs to be clarified. (Quillian, 1968, p. 260)here are some terminological distinctions that are crucial to explain, or else confusions can easily arise. In the formal study of grammar, a language is defined as a set of sentences, possibly infinite, where each sentence is a string of symbols or words. One can think of each sentence as having several representations linked together: one for its sound pattern, one for its meaning, one for the string of words constituting it, possibly others for other data structures such as the "surface structure" and "deep structure" that are held to mediate the mapping between sound and meaning. Because no finite system can store an infinite number of sentences, and because humans in particular are clearly not pullstring dolls that emit sentences from a finite stored list, one must explain human language abilities by imputing to them a grammar, which in the technical sense is a finite rule system, or programme, or circuit design, capable of generating and recognizing the sentences of a particular language. This "mental grammar" or "psychogrammar" is the neural system that allows us to speak and understand the possible word sequences of our native tongue. A grammar for a specific language is obviously acquired by a human during childhood, but there must be neural circuitry that actually carries out the acquisition process in the child, and this circuitry may be called the language faculty or language acquisition device. An important part of the language faculty is universal grammar, an implementation of a set of principles or constraints that govern the possible form of any human grammar. (Pinker, 1996, p. 263)A grammar of language L is essentially a theory of L. Any scientific theory is based on a finite number of observations, and it seeks to relate the observed phenomena and to predict new phenomena by constructing general laws in terms of hypothetical constructs.... Similarly a grammar of English is based on a finite corpus of utterances (observations), and it will contain certain grammatical rules (laws) stated in terms of the particular phonemes, phrases, etc., of English (hypothetical constructs). These rules express structural relations among the sentences of the corpus and the infinite number of sentences generated by the grammar beyond the corpus (predictions). (Chomsky, 1957, p. 49)Historical dictionary of quotations in cognitive science > Grammar
-
4 instruction
2) инструкция; программа действий3) обучение•- accumulator shift instruction
- actual instruction
- address modification instruction
- addressless instruction
- alphanumeric instruction
- alphameric instruction
- arithmetical instruction
- arithmetic instruction
- assignment instruction
- autocode instruction
- autoindexed instruction
- basic instruction
- bit-manipulation instruction
- blank instruction
- block-move instruction
- branching instruction
- branch instruction
- branching-programmed instruction
- branch-on-zero instruction
- breakpoint instruction
- broadcast instruction
- byte instruction
- call instruction
- card read instruction
- character-oriented instruction
- clear and add instruction
- clear store instruction
- clearing instruction
- compare instruction
- comparison instruction
- complete instruction
- compound instruction
- computer instruction
- computer-aided instruction
- computer-assisted instruction
- conditional assembly instruction
- conditional branch instruction
- conditional breakpoint instruction
- conditional instruction
- conditional jump instruction
- conditional stop instruction
- conditional transfer instruction
- conflicting instructions
- constant instruction
- consumer instruction
- control instruction
- control transfer instruction
- convert instruction
- current instruction
- data movement instruction
- data transfer instruction
- decimal instruction
- decision instruction
- declarative instruction
- decoded instruction
- diagnose instruction
- direct access instruction
- direct instruction
- discarded instruction
- discrimination instruction
- display instruction
- do-nothing instruction
- double-precision instruction
- dual-issued instructions
- dummy instruction
- edit instruction
- effective instruction
- engineering instruction
- entry instruction
- exchange instruction
- executive instruction
- external devices instruction
- extracode instruction
- extract instruction
- floating-point instruction
- follow the instructions carefully
- format instruction
- four-address instruction
- full-word instruction
- general instruction
- half-word instruction
- halt instruction
- housekeeping instruction
- idle instruction
- ignore instruction
- illegal instruction
- immediate address instruction
- immediate instruction
- imperative instruction
- indirect instruction
- input/output instruction
- inquiry input/output instruction
- integer instruction
- internal manipulation instruction
- interpretive instruction
- interrupt instruction
- interruptable instruction
- invitation instruction
- invite instruction
- iterative instruction
- jump instruction
- jump to subroutine instruction
- keyboard instruction
- linear programmed instruction
- link instruction
- linkage macro instruction
- load index register instruction
- load repeat counter instruction
- logical instruction
- logic instruction
- look-up instruction
- machine code instruction
- machine instruction
- machine language instruction
- macro instruction
- macroexpansion instruction
- macroprocessing instruction
- maintenance instruction
- math instruction
- memory load instruction
- memory protect privileged instruction
- memory-reference instruction
- micro instruction
- microprogrammable instruction
- mnemonic instruction
- modified instruction
- monadic instruction
- monitor call instruction
- motion video instruction
- move instruction
- MQ register sign jump instruction
- MQ sign jump instruction
- multiaddress instruction
- multilplying instruction
- multiple-address instruction
- multiple instruction
- multiple-cycle instruction
- multiple-length instruction
- multiplier-quotient register sign jump instruction
- multiplier-quotient sign jump instruction
- multiply-accumulate instruction
- N-address instruction
- native instruction
- noaddress instruction
- nonmemory-reference instruction
- nonprint instruction
- nonprivileged instruction
- non-speculative instruction
- no-op instruction
- no-operation instruction
- normalized instruction
- normalize instruction
- N-plus-one address instruction
- null instruction
- object instruction
- on-chip instruction
- one-address instruction
- one-and-a-half-address instruction
- one-over-one address instruction
- one-plus-one address instruction
- on-screen instruction
- operational-address instruction
- operation-address instruction
- optional halt instruction
- optional pause instruction
- optional stop instruction
- organizational instruction
- overflow jump instruction
- overriding instruction
- pause instruction
- picture-description instruction
- preempted instruction
- presumptive instruction
- prewired instruction
- privileged instruction
- producer instruction
- programmed instruction
- propagation instruction
- pseudo instruction
- quadruple address instruction
- quasi instruction
- reading instruction
- read instruction
- red-tape instruction
- reference instruction
- register-to-register instruction
- relative instruction
- repeat instruction
- repetition instruction
- restart instruction
- return instruction
- right shift instruction
- rotate instruction
- roundoff instruction
- scalar instruction
- search instruction
- seek instruction
- shift instruction
- shift-jump instruction
- short instruction
- single-address instruction
- single-cycle instruction
- single-operand instruction
- skeleton instruction
- skip instruction
- source-designation instruction
- source-destination instruction
- stack instruction
- steering instruction
- stop instruction
- string instruction
- summarize instruction
- supervisor call instruction
- symbolic instruction
- table look-up instruction
- tape instruction
- text-entry instruction
- three-address instruction
- three-plus-one-address instruction
- transfer instruction
- transfer of control instruction
- trap instruction
- try instruction
- two-address instruction
- two-plus-one-address instruction
- unconditional branch instruction
- unconditional control transfer instruction
- unconditional jump instruction
- unconditional transfer instruction
- unmodified instruction
- unretired instruction
- variable instruction
- variable length instruction
- variable-cycle instruction
- vector-processing instruction
- vector instruction
- verbal instruction
- waste instruction
- write instruction
- zero-address instruction
- zeroing instruction
- zero-suppress instructionEnglish-Russian dictionary of computer science and programming > instruction
-
5 Artificial Intelligence
In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, EventuallyJust as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)5) Problems in Machine Intelligence Arise Because Things Obvious to Any Person Are Not Represented in the ProgramMany problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)[AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract FormThe basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)There are many different kinds of reasoning one might imagine:Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory FormationIt is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)We might distinguish among four kinds of AI.Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)16) Determination of Relevance of Rules in Particular ContextsEven if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)19) A Statement of the Primary and Secondary Purposes of Artificial IntelligenceThe primary goal of Artificial Intelligence is to make machines smarter.The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)21) Perceptual Structures Can Be Represented as Lists of Elementary PropositionsIn artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)Historical dictionary of quotations in cognitive science > Artificial Intelligence
См. также в других словарях:
String (computer science) — In formal languages, which are used in mathematical logic and theoretical computer science, a string is a finite sequence of symbols that are chosen from a set or alphabet. In computer programming, a string is traditionally a sequence of… … Wikipedia
Word (computer architecture) — Processors 1 bit 4 bit 8 bit 12 bit 16 bit 18 bit 24 bit 31 bit 32 bit 36 bit 48 bit 60 bit … Wikipedia
Comparison of programming languages (string functions) — String functions redirects here. For string functions in formal language theory, see String operations. Programming language comparisons General comparison Basic syntax Basic instructions Arrays … Wikipedia
Directed acyclic word graph — For the US Department of Defense review panel, see Deputy’s Advisory Working Group. The strings tap , taps , top , and tops stored in a Trie (left) and a DAWG (right), EOW stands for End of word. In computer science, a directed acyclic word graph … Wikipedia
STOSW — Store String Word (Computing » Assembly) … Abbreviations dictionary
Statistical machine translation — (SMT) is a machine translation paradigm where translations are generated on the basis of statistical models whose parameters are derived from the analysis of bilingual text corpora. The statistical approach contrasts with the rule based… … Wikipedia
information processing — Acquisition, recording, organization, retrieval, display, and dissemination of information. Today the term usually refers to computer based operations. Information processing consists of locating and capturing information, using software to… … Universalium
RFLAGS — Le registre RFLAGS aussi dit registre de drapeaux est un registre spécifique des processeurs de la famille x86 64 (64 bits). Il est compatible avec les registres EFLAGS et FLAGS hérités des familles x86 (32 bits) et précédente (16 bits). Il… … Wikipédia en Français
TI-990 — The TI 990 was a series of 16 bit minicomputers sold by Texas Instruments (TI) in the 1970s and 1980s. The TI 990 was a replacement for TI s earlier minicomputer systems, the TI 960 and the TI 980. It had several uniquely innovative features, and … Wikipedia
performing arts — arts or skills that require public performance, as acting, singing, or dancing. [1945 50] * * * ▪ 2009 Introduction Music Classical. The last vestiges of the Cold War seemed to thaw for a moment on Feb. 26, 2008, when the unfamiliar strains … Universalium
Resource fork — The resource fork is a construct of the Mac OS operating system used to store structured data in a file, alongside unstructured data stored within the data fork. A resource fork stores information in a specific form, such as icons, the shapes of… … Wikipedia